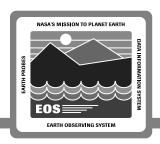
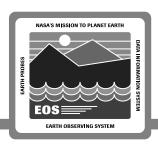
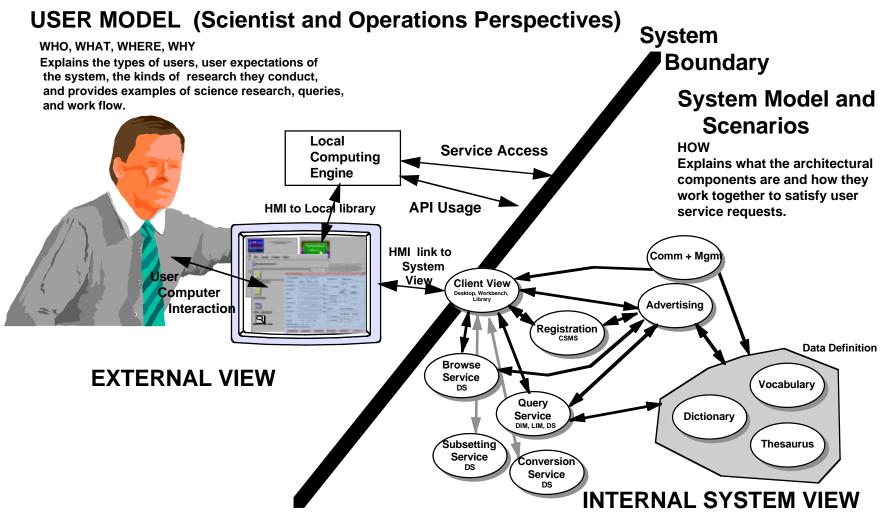

SDPS System Scenarios Overview Ron Williamson

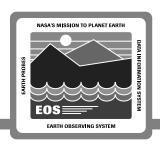
13 February 1995

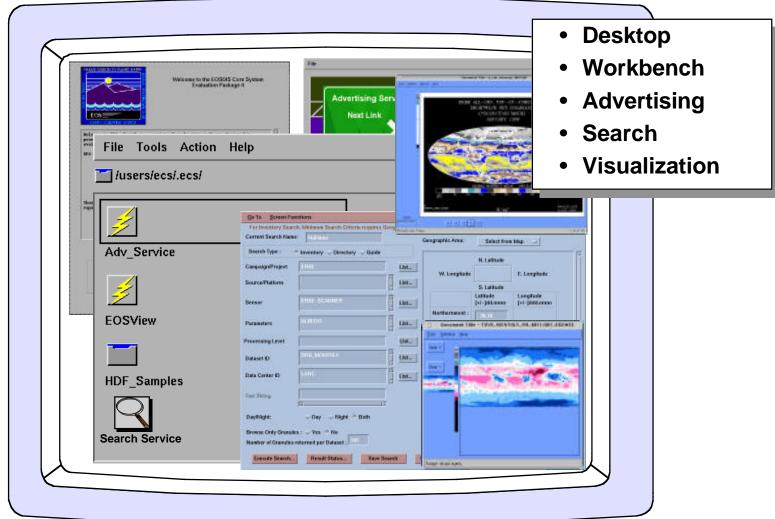


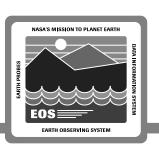
ECS Scenario Context



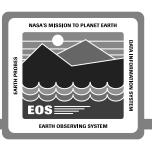

Role of Scenarios


- System Scenarios
 - Dynamic Representation of System
 - **System Component Interaction**
 - **User View and System View**
 - Scientists not interested in internal system dynamics
 - Developers need static object and dynamic scenario views
 - Uses Object Model Vocabulary and Interfaces
- Object Model
 - Static Representation of System
 - Science Domain and System Design Vocabulary
 - Science and Design Concept Relationships
- Interfaces
 - Static Representation of System
 - Major System Components: Subsystems and Cls
 - Interface Objects Link to Object Model


Scenario Relationship to User Model



SDPS External View

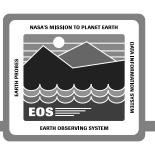

SDPS Internal System Scenario Views

Instrument Scientist View Scientist View Advertising Client **Ingest Clients Data Dictionary** (Workbench, Desktop) **Planning Data Management Data Processing** (LIM, DDS) **Data Server** (ESDTs +) **Operations View**

SDPS Scenario Views

A Instrument Scientist View

- Product Planning (Release A and B)
- Instrument Scientist User (Barkstrom Team)
- Demonstrate the planning and processing steps for standard productions and reprocessing in Release A and on-demand processing in Release B of CERES product algorithms. (Barkstrom Team).


B Scientist View

- Access by Land Processes User (Release A and B)
- Experienced EOSDIS User (Emery / Baldwin Team)
- DEM and AVHRR (Release A) /MODIS/Landsat-7 (Release B) data is combined to create surface models for the scenes of interest and validated with higher resolution Aster data (Release B).

• C Operations View

- Data Server Administration (Release A and B)
- DAAC Operations Staff (Internal & External M&O Teams)
- Demonstrate the planning, maintenance and operations steps related to data server administration.

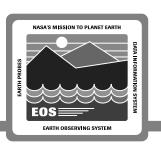
Scenario A: Production Planning

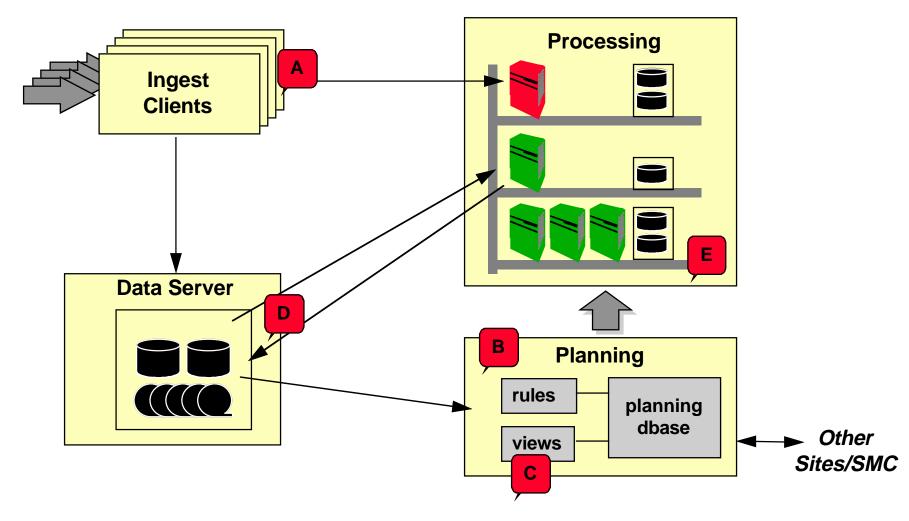
- Release A and B Scenarios for CERES Instrument Scientist (LaRC)
- Earth's Radiation Budget (LaRC)
 12 Subsystem Planning and Sequencing of CERES Production
 Release A Standard Production and Reprocessing
 Release B On-demand Processing
- The Scenario Includes
 Planning Process and Instrument Team Interaction
 Production Status Monitoring
 Plan Monitoring
- Detailed Scenario Presented (Day 3) in Planning and Data Processing Subsystem Design Presentation and Documents

Scenario A: Science Overview

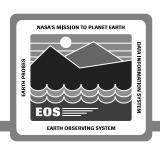
Instrument Scientist Scenario ("Instrument team and operations provide inputs to product planning process, monitors production status, plans and schedule")

Plan analysis and generation with Instrument team peer review. **Generate Integrated Plan for DAAC Review and Monitor Resulting Plan** (3 DAS. **Candidate** DAAC Request, Plan Analyze Request **Activation** Plan Maintenance Plan + Mod Plan **Plan Management** Generation **Analysis** Monitor **DAAC** Progress Instr. Team Coord Review Strawman **DAAC Coord** Instrument and Coordination **Team Review Plan Analysis** 705-CD-002-001 RW-9


Scenario A: Science Overview Flow



1	User Enters Standard Production Request and Production Scheduler Notified
2	DAS for SDPF Available and Viewable
3	Production Scheduler Initiates Creation of Candidate Plan
4	Production Scheduler Views Plan
5	Production Scheduler Views PGE Profile
6	Instrument Team Reviews Strawman Plan
7	Instrument Teams and DAAC Operation Staff Coordinate Plan Activation
8	DAAC Operations Staff and Instrument Team Monitor Progress


Scenario A: Science Overview

Scenario A: Key Features

A	Instrument Team Provides Inputs to Planning Process
	Naming Convention Differences
	Ingest Push and Pull Models
В	Configuration Management of Planning is Automated
C	Consistent Views of Plans Maintained
	Schedule for Product Release
	Plans and Schedules
	Plan and Schedule Updates
D	Toolkit Interface to Data Server Services is Consistent with Design
E	Parallel Planning (QA) and Processing (AI&T) Activities

Scenario B: Science, Theory and Method

SCIENCE

- Process AVHRR reflected channel data, create "super resolved" model of surface albedo
- Use super resolved albedo models to create high resolution NDVI composites
- Used to determine surface type heterogeneity within an AVHRR pixel

THEORY

- Repeat 1km AVHRR data are non-coincident
 - Centers of repeat FOVs wander over a specified grid box
 - Each repeat measurement contains different feature information within grid
- Bayesian maximum posterior estimates used
 - Deconvolve differences from multiple repeat AVHRR data sets
 - Reconstruct surface data at resolution higher than individual AVHRR measurements

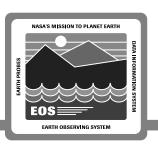
METHOD

- Use a high resolution (180m) DEM in conjunction with solar and satellite viewing geometry to create a constant albedo model of the satellite measured illumination
- Register FOVs from multiple AVHRR data sets to model grid, integrate model values over AVHRR point spread function to give model estimate of reflectivity
- Use Bayesian theory to determine corrections to the constant albedo values which best estimate AVHRR measured reflectivities
- Result is reconstructed albedo on 180m grid, verified with Landsat TM data
- Assume surface characteristics are static over accumulation period of data

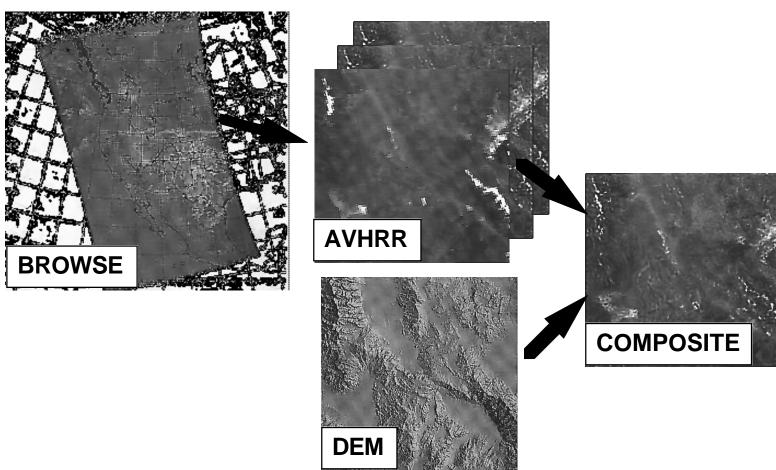
Scenario B: Development and Production Stages

DEVELOPMENT (Release A) STAGE

- Select development region -- Requirements are: 1) availability of high resolution DEM,
 2) relatively static surface features, 3) moderate topography, 4) infrequent cloudiness
- Determine accumulation period -- Based on availability of cloud free Landsat TM scene for verification and availability of cloud free AVHRR data, close to nadir.
- Region selected is 1 x 1 degree region in Death Valley, time period 04/01/92 06/01/92.


DATA REQUIREMENTS FOR DEVELOPMENT STAGE

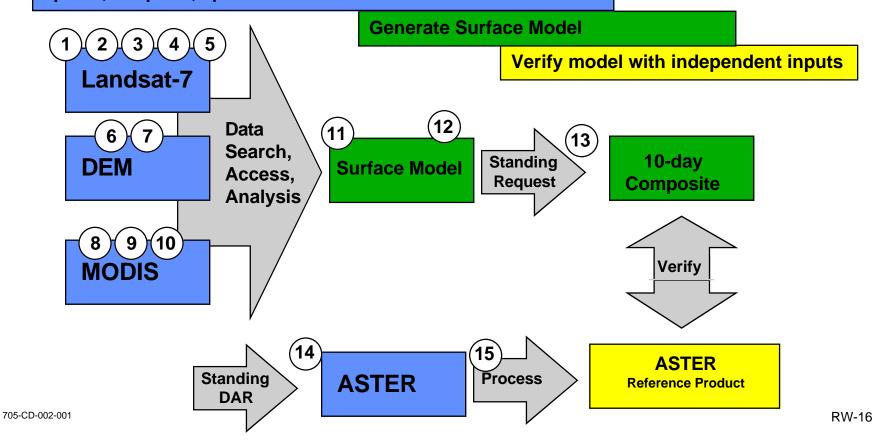
- 90 meter DEM (later degraded to 180m).
- 2 cloud free TM scenes over region, preferably in early April and late May 1992.
- 20 AVHRR data sets, level 1 or 2, reflectivity or albedo, bands 1 and 2, minimal cloud contamination, within 20 degrees scan angle of nadir, early afternoon pass.
- Any other data describing surface characteristics of region: albedo, surface types, vegetation, etc.


EOS ERA (Release B) PRODUCTION STAGE

- Use MODIS data instead of AVHRR
- Verify composite with high resolution ASTER

Scenario B: Science Overview Release A

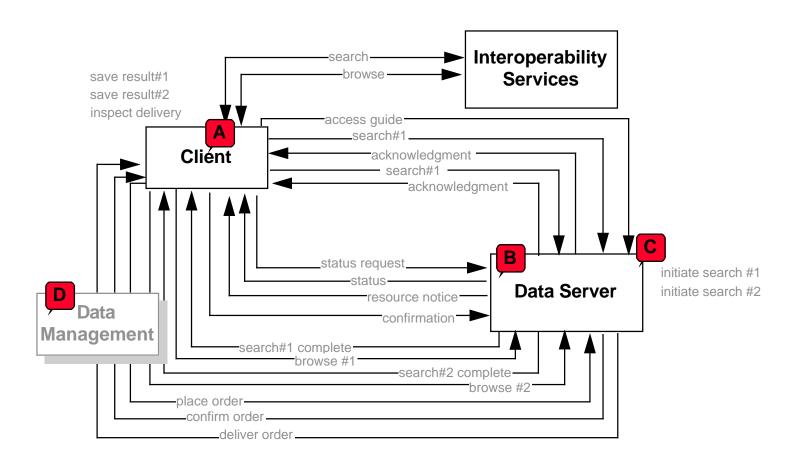
1km AVHRR¹³ + 180 m DEM = 180m COMPOSITE



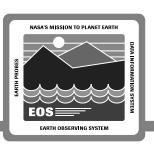
Scenario B: Science Overview Release B

User Model Scenario #7 ("Development of a method to integrate data sets of varying resolution")

Develop technique to integrate data from sensors of varying spatial, temporal, spectral resolutions

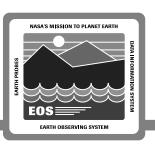

Scenario B: Science Flow Release B

1	Search Service Used for Landsat-7, Results Returned & Selection Made
2	User Views Query Results, Selects Granules
② ③ ④ ⑤	User Inspects Image
4	User Request Full granule of each selected image
⑤	Data Received at Local Workstation
6	Search Advertisements for DEM Providers
6 7	Retrieve DEM Fragments and Deliver to User
8	User using Advertising to Access MODIS Level 1B Service Provider
8 9	Search for MODIS Data
10	MODIS Data Received at Local Workstation
1	User Analyzes Landsat, MODIS and DEM to Create Surface Model
12	User Defines private 'user method' at local workstation (Release A + B)
(3)	User issues a standing request to obtain data for 10 day intervals (Rel A+B)
14	User establishes request for cloud-free ASTER scenes
15)	User receives requested data and stores in local archive

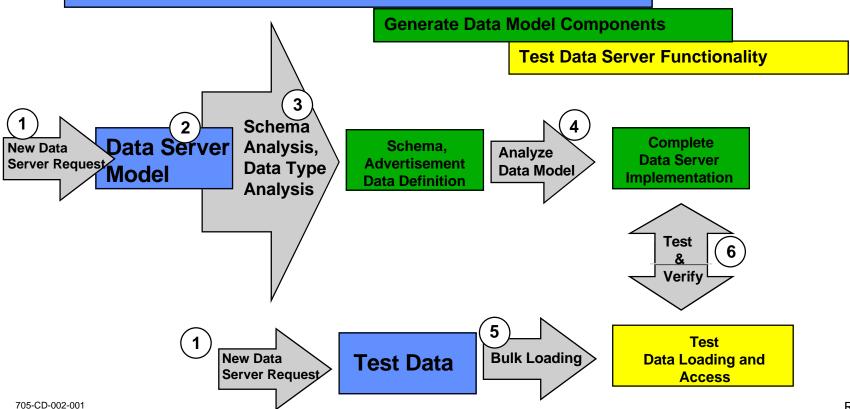

Scenario B: Design Overview

Scenario B: Key Features

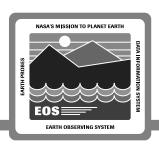
- V1 Desktop and Workbench Integrates ECS and V0 Services
 - Search, Advertising, and Data Definition Services
 - Data Server Type Services for Search & Access at Release A
 - Data Server Type Services for Subsetting at Release B
- V0 Search Service used to access V0 servers and ECS Data Servers
- **C** WWW access to Document Data Server
- Integrated Site View at Release B


Scenario C: Data Server Admin

- Release A and B Scenarios for Data Server Administration
- Earth's Radiation Budget (LaRC) **Product Specific Model In CERES Data Modeling Documents**
- The Scenario Includes **Develop Data Server Model Load Test Data Verify Operations**
- More Detailed Scenario Information Available in **Data Server Subsystem Documents and Presentation DAAC Operations Presentation**

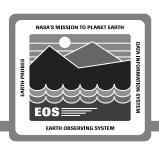

Operations Scenarios - A Day in the Life of a Release A DAAC presentation

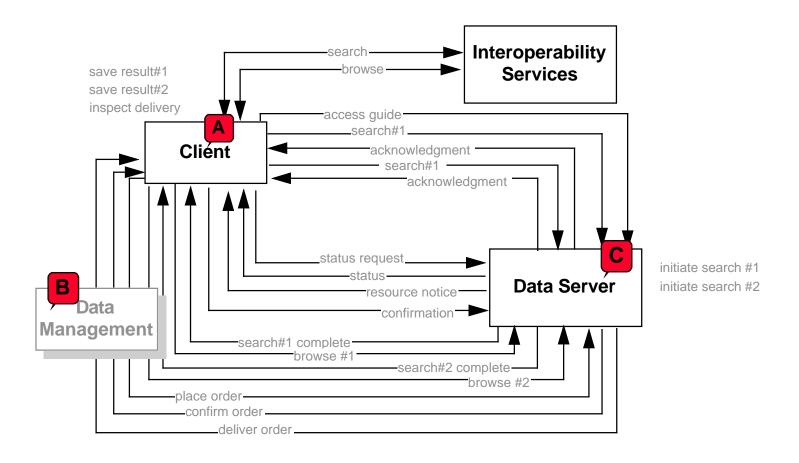
Scenario C: Operations Overview


Operations Scenario ("Set up a Data Server, analyze the process of building and integrate a new Data Server into the Data Management")

Implement data server administration and operations services to develop a data server model, load test data, and verify operations

RW-21


Scenario C: Data Server Admin Flow



- 1 Administrator Receives New Data Server Request and Gathers Data Server Characterization and Test Data
- Administrator Checks Validity of Data Type Definitions, Schema Consistency, Site Unique Extensions
- Administrator Analyzes Schema and Data Type Views and Creates Internal and Export Schemas, Advertisements, and DBMS, Files System and Archive Linkages
- Administrator Checks Complete Data Server Logical and Physical Data Models for Consistency and Completeness
- Operator Bulk Loads Test Data and Verifies Content of Data Server
- 6 Operator and Administrator Integrates and Tests Data Server Components for Full Operational Test

Scenario C: Design Overview

Scenario C: Key Features

- A Online Support for Administration and Operations Services
 - Configurable User Interface
 - Common Access to all Services
- **B** Online Support for Data Management & Advertising Integration
 - Schema Export, Integration and Test within LIM
 - Data Dictionary Term Definition Export and Test
 - Advertisement Generation and Test
- C Online Support for Data Server Operational Testing
 - Bulk Loading of Test Data
 - Data Access Test Utilities